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νµ disappearance

A hot topic...
 Oscillation measurements in 

far detector constrained from 
near detector (xsec x flux) : 
aim to ~1% uncertainty on signal 
normalization at future long 
baseline (T2K today ~8 %) !

ND→FD extrapolation : 
● different acceptance and target 
● different Eν distribution 
● νµ → ν

e
, νµ

→ rely on models to extrapolate :

ν
e
 appearance

many different ν interaction models +

convolution of xsec with final state interaction effects

● Eν inferred from final state leptons/hadrons which have limited angular acceptance, 

threshold on low energy particles, very small info on recoiling nucleus...

large model uncertainties convoluted with unfolding of detector effects 
→ measurements also quoted in limited phase space, x-checks btw different selections

large model uncertainties on background 
→ control regions and sidebands to constrain background from data

 Measurement of ν xsec at ND is experimentally complicated: 
● Eν not known: xsec measurement always convoluted with flux → importance of 

minimization of uncertainties in flux modeling (and/or ratio measurements)
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   T2K Collaboration,  
Phys.Rev. D91 (2015) 7, 072010



  

Outline
 Brief description of experiments:

off-axis near detector (ND280)

on-axis near detector (INGRID)

● MINERvA

 Overview of recent measurements

T2K flux : ND280→INGRID MINERvA flux ● CC0π

● CC1π , coherent CC1π

● CC inclusive in different targets,
and for ν

e
 

● T2K

(talks from A. Furmanski, A.Ghosh)

(talks from M.Nirkko, M.Carneiro)

● (DIS: talk from A.Bravar)
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(not covered: NOMAD, MiniBooNE, ArgoNeut,...)

 Theoretical review of models in talks from H.Gallagher, M.Martini, T.Feusels

Formaggio, Zeller 
arXiv:1305.7513

CAPTAIN talk from A. Higuera 

ArgoNeut see back-up



  

T2K near detectors

● iron plates alternated with CH scintillator
   (+ proton module : fully active scintillator) 

● TPC → good tracking efficiency (acceptance 
enlarged to backward tracks), resolution (6% 
p

T
<1GeV) and particle identification

● FGD scintillators : ~8x1029 nucleons (CH) + 2.2x1028 (H
2
O)

 Oscillation experiment on J-PARC beam with 
Super-Kamiokande as FD (POT : ~6x1020 νµ + ~4x1020 νµ)

● flux measurement from dedicated experiment 
NA61/SHINE with T2K replica target

INGRID : on-axis

● coarser granularity, not magnetized but larger 
mass : 2.5x1030 nucleons (Fe) + 1.8x1029 nucleons (CH)

● fully magnetized (0.2 T)

ND280 : off-axis (2.5º) 
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● P0D scintillator with water target



  

MINERvA

 Dedicated xsec experiment 
on the NuMi beam 

   POT : 3x1020 νµ + 2x1020 νµ

● muon → MINOS : strong dependence 
of efficiency on muon kinematics 

   (0 eff for pµ<1GeV and θµ>20º)

   momentum resolution 11 % 

● large active mass composed of 
scintillator (~3.5x1030 nucleons CH)

● flux constrained from NA49 
on C and π/K ratio from 
MIPP (replica NuMi target)
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● upstream inactive targets (C, Pb, Fe, H
2
O) 

alternated with scintillator



  

Charged Current Quasi-Elastic

 Dominant contribution at T2K flux : QE approximation assumed to 
compute Eν (from Eµ) for all selected events in SuperKamiokande

 MC description tuned from bubble 
chambers νH data

● possibility of interactions with NN pairs 
(aka 2p2h and MEC effects)

● long range correlation between nucleons 
(aka RPA)

→ wrong modelling would cause bias on oscillation parameters

 Final State Interaction only included in 
MC models: CC1π with pion re-absorption 
included in signal (CC0π)
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Effort ongoing to include them in MC

Martini et al., Phys.Rev. C80 (2009) 065501

MiniBooNE Collaboration, Phys.Rev. D81 (2010) 092005

 MiniBoone measurement shows large 
discrepancy wrt to this model (large M

A
QE) 

→ explication from theoretical models 
including :



  

CC0π: T2K new result

New analysis : mu, mu+p → increased acceptance at high angle

background from control regions

Double-check with analysis with proton inclusive selection : in good agreement 
→ results are solid against any model-dependent bias

differential in muon kinematics

minimize 
model-
dependence

Martini et al. 
RPA

Martini et al.
RPA+2p2h

data (shape uncertainties)

normalization uncertainties
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NEW
 !

preliminary



  

CC0π: open issues
● New models with RPA+2p2h cannot describe full phase space (eg forward region has 

pollution from CC1π + π absorption FSI)
● need to properly quantify new model uncertainties (eg comparisons btw models)

● 'old' models implemented in MC contain handles to tune to data

Nieves et al. 
RPA+2p2h

Martini et al. 
RPA+2p2h

NEUT  
(M

A
QE =1.21 GeV)

GENIE 
(M

A
QE =0.99 GeV)

Analysis I

Analysis II
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NEW
 !

preliminary



  

νµ Q
2<0.2 GeV2

CC0π: proton kinematics
 MINERvA more inclusive : mu + at least 

1p (no pions) and no cuts against FSI
still dominated by model uncertainties through 
proton/muon acceptance and pion rejection

QE peak (180º) 
smeared by 
Fermi motion, 
inelastic scatt. 
and FSI
(+ NN 
correlations)
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Minerva Collaboration, 
Phys.Rev. D91 (2015) 7, 071301

νµ Q
2<0.2 GeV2

 MINERvA : 

νµ data suggest additional 

proton with E<225MeV in 
25 ± 1(stat)  ± 9(syst) % of events 

νµ data: no additional 

proton (low sensitivity of 
Minerva to low E neutrons)

νµ n p → µ- p p 

νµ n p → µ+ n n 

2p2h interactions :

● more inclusive proton-related 
variable: vertex activity
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● comparison ν – ν : systematics 
highly correlated (70%)



  

CC1π± : MINERvA
 Mainly from ∆ resonance 

Large effects from FSI: pion absorption, 
production or charge exchange

 Signal defined as 
with no other pions and W

true
<1.4 GeV

(90 % π+, 
π- from FSI)

(background normalized from fit to W
reco 

in data)

 FSI effects larger than difference in xsec models : 
FSI from MC cascade models tuned with π-N 
measurements (+new measurement by DUET)
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 MiniBooNE – MINERvA 
discrepancy?

Minerva Collaboration,
arXiv:1406.6415



  

CC1π+ in water : T2K

coming 
soon : T2K 
CC1π in 
Carbon with 
interesting 
angular 
studies...

 Constrain FSI on different nuclei (C vs O)

● backgr. of carbon interactions constrained from data 
(also control regions for other CC interactions) 

 Results : 

 FGD2 :
● passive water 

interleaved 
with CH 
scintillator 
modules

upstream modules 
CH+H

2
O

downstream 
modules CH only
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NEW
 !

preliminary

● suppression at π small angle (contribution from 
coherent CC1π)

● data below GENIE as in MINERvA



  

CC1π coherent

● very large model uncertainties 

selection based on presence of only µ and π, no energy released around the 
vertex (low vertex activity) and small |t| 

→ contamination of diffractive xsec on H : 5% T2K, 7% MINERvA

● may be a background to oscillation experiment when π± (NC π0) 
mistagged as proton (electron)

→ still model-dependence in acceptance corrections

 Small component (~1% of CC) :

Rein-Seghal model: Adler theorem to relate pion-nucleus xsec to CC1π 
coherent at Q2=0 and then approximation to go away from Q2=0

Alvarez-Ruso model is a microscopic model which computes diagrams with ∆ resonance

● difficult to isolate → maturity of our experiments !

● very small momentum transferred to the nucleus (|t|) which 
remains intact and unaffected

12/18



  

CC1π+ coherent: T2K

● Signal region with small vertex activity and 
low |t| → 2.5σ indication of CC1π coherent

● 2 control regions (large vtx activity and |t|) 
to fit background vs pion momentum and 
hadronic mass (MC suppressed by ~85%)

→ very good agreement of background 
tuned from data but still large backg. 
model uncertainties 

signal bkg. control region

small vertex activity

large vertex activity
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NEW
 !

preliminary



  

CC1π± coherent: MINERvA
● Similar selection and background constraints in ν and ν beams
→ large suppression of backgrounds wrt to MC predictions (60-70 %)

● Enough statistics for a 
differential measurement

→ indication of 
suppression at low π 
energy and large π angle 
wrt to Rein-Seghal model
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Total xsec:

at low energy first measurement 
from T2K: in agreement with previous 
upper limits (K2K, SciBooNE) 

higher energy MINERvA agrees with previous 
measurements on different targets (eg ArgoNeut)

Minerva Collaboration, 

Phys.Rev.Lett. 113 (2014) 26, 261802



  

module group 7

module group 5

module group 3

module group 1

CC inclusive vs Eν

● Importance of good flux 
modelling

T2K INGRID:

● Different off-axis angles 
correspond to different Eν flux

→ extract Eν in a model independent 

way (same concept of NuPrism)

NEW ! preliminary
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Ratio between targets (CC inclusive)

Useful to constrain nuclear effects (scaling with A)

 T2K INGRID: standard modules(Fe) / proton module(CH)

→ impose same acceptance to cancel systematics 
on xsec modelling and flux

dominated by detector 
systematics (!)

NEUT 1.037, 
GENIE 1.044

 MINERvA : using 
upstream inactive targets

● CH contamination 
(20-40%) constrained 
from data (2-8% 
uncertainty)

● data/MC good 
agreement vs Eν but 

not vs Bjorken x

● E
had

 from calorimetric 
energy deposited
→ Bjorken x
x=Q2

/(2MN Ehad )
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T2K,Phys.Rev. D90 (2014) 5, 052010

Minerva, Phys.Rev.Lett. 112 (2014) 23, 231801



  

T2K ν
e
 xsec

 ν
e
 on C: flux ~1 % → stringent selection 

unfolding

● large model-dependence where very small efficiency (otherwise stat. limited)

● π0→γ background 70 % from out-of-fiducial-volume constrained from data (2.1 % systematics)
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 ν
e 
on water with T2K P0D filled with 

water or emptied (air) 

● requires forward electrons (θ<45°) + 
shower/track variable to remove µ and π0  

● subtraction of air data from water data 
→ large statistical uncertainties (syst dominated by detector)

Ron water=(water−air)data/MC onwater=0.87±0.33(stat.)±0.21(syst )

Important for oscillation : νµ→ν
e
 appearance

T2K Collaboration, Phys.Rev.Lett. 113 (2014) 24, 241803

T2K Collaboration, Phys.Rev. D91 (2015) 11, 112010



  

Conclusions and prospects

 Far from 1% normalization uncertainty needed for δ
CP

 measurements at DUNE and HK

→ crucial to keep investment on long term effort on neutrino xsec measurement 

complementarity of T2K and MINERvA (MicroBooNE...): measurements with 
different flux, acceptance, systematics, ...

 CC0π under change of paradigm: study of MEC and 2p2h effects 

 CC1π: 

● need to gain control (both experimentally and in models) on hadronic part of 
final state (proton after FSI)

● estimation of proper uncertainties for these new models and implementation in MC

● how to disentangle xsec uncertainties and large FSI effects 

More measurements needed: hadronic (inclusive) variables, angular 
distributions (with large statistics), comparison of different targets, ν vs ν, ...

● first measurements on coherent CC1π to constrain very large 
uncertainties for low |t|

[many results shown today are the first measurements for that energy or target nuclei !!]
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NEW CC0π 
measurement 

in T2K

NEW CC1π 
on water T2K 

NEW CC1π 
coherent in T2K

NEW CC vs Eν

 in T2K
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CC inclusive: T2K

 Simple analysis: require at least one muon (small background from NC and flux pollution νµ)

 Dominated by CCQE at T2K Eν energy:

→ indications in favour of new models with 2p2h → agreement also with old tuned models

Martini et al, Phys.Rev. C90 (2014) 025501 T2K Collaboration, Phys.Rev. D87 (2013) 9, 092003

BU: 1



  

Charged Current Quasi-Elastic
 Dominant contribution at T2K flux : QE approximation assumed to 

compute Eν (from Eµ) for all selected events in Super-Kamiokande

 MC description based on 
● form factors tuned from ep 

scattering (M
V
) and νH xsec in 

bubble chamber (M
A
, deuterium)

● nuclear effects : Relativistic 
Fermi Gas with Pauli blocking

(+ FSI in MC cascade models)

● possibility of interactions with NN pairs 
(aka 2p2h and MEC effects)

● long range correlation between nucleons 
(aka RPA)

→ wrong modelling would cause bias on oscillation parameters

 Final State Interaction only included in 
MC models: CC1π with pion re-absorption 
included in signal (CC0π)

BU:2

 MiniBooNE measurement shows large 
discrepancy wrt to this model (large M

A
QE) 

→ explication from theoretical models including :

Effort ongoing to include them in MC

Martini et al., Phys.Rev. C80 (2009) 065501

MiniBooNE Collaboration, Phys.Rev. D81 (2010) 092005



  

CC0π: proton kinematics

 T2K on-axis INGRID:  
separate only pure CCQE 
(kinematics cuts against FSI,
 and 2p2h)

large model dependence : 
discrepancy btw mu only and 
mu+p → models do not 
describe well the proton 
kinematics

 MINERvA more inclusive : mu + at least 
1p (no pions) and no cuts against FSI

still dominated by model uncertainties through 
proton/muon acceptance and pion rejection

QE peak (180º) 
smeared by 
Fermi motion, 
inelastic scatt. 
and FSI
(+ NN 
correlations)

BU: 3

T2K Collaboration, Phys.Rev. D91 (2015) 11, 112002

Minerva Collaboration, 
Phys.Rev. D91 (2015) 7, 071301



  

CC0π MINERvA: vertex activity

● proton counting (but modelling of proton kinematics basically unknown...)
● water vs carbon → disentangle FSI from MEC

● comparison of ν and ν CC0π : MEC/2p2h effects partially suppressed in ν

 In the pipeline for T2K:

νµ Q
2<0.2 GeV2

νµ Q
2<0.2 GeV2

 MINERvA : 

νµ data suggest additional 

proton with E<225MeV in 
25 ± 1(stat)  ± 9(syst) % of events 

νµ data: no additional 

proton (low sensitivity of 
Minerva to low E neutrons)

unlikely to be due to systematics (eg, FSI): 
highly correlated (0.7) btw νµ and νµ

νµ n p → µ- p p 

νµ n p → µ+ n n 

;
2p2h interactions :

● muon + minimal 
hadronic activity far 
from vertex

● more inclusive 
proton-related variable: 
vertex activity

BU: 4

Minerva Collaboration, Phys.Rev.Lett. 111 (2013) 022502, Phys.Rev.Lett. 111 (2013) 2, 022501



  

ArgoNeuT: 2p2h observation

 Short Range Correlation NN pair typically above Fermi level 
→ final state with µ + 2 high-momentum protons (no experimental sensitivity to neutrons)

Proof of principle of LAr technology: full 3D imaging, very low proton threshold (21 MeV)

● back-to-back protons before FSI: 

from analogy to 
electron-N and 
hadron-N 
scattering

More precise quantitative analysis need improved models for interpretation of 
experimental data (including FSI!)

● back-to-back protons in Lab. reference frame:

CCQE interaction on a nucleon in SRC pair → correlated n 
ejected as well due to high relative momentum of the pair

CC ∆ pionless decay and meson exchange current with low 
momentum transfer to the pair

BU: 5



  

MINOS: CCQE
Effective parametrization for background constraint and signal (M

A
QE)

W<1.3 GeV
for CC ∆ resonant 
events

nuisances

M
A

QE well above measurement from bubble chamber 
→ modern explication: 2p2h contribution

E
had

>0.25 GeV

E
had

<0.25 GeV

BU: 6



  

CC1π± coherent: MINERvA

● Similar selection and background constraints applied to ν and ν beams
→ large suppression of backgrounds wrt to MC predictions (60-70 %)

● systematics 
dominated by model 
uncertainties

● Enough statistics for a 
differential measurement

→ indication of 
suppression at low π 
energy and large π angle 
wrt to Rein-Seghal model

BU: 7



  

MINERvA : π0 from CC in ν beam
 Interesting channel ν p → µ+ n π0:

● NC π0 production is dominant background for ν
e
 appearance

● provide constraints on FSI for π0: no π0 beam → 
FSI model based only on isospin relations π± → π0 

● require µ+ (MINOS) π0 (from energy deposited by γγ)

 Results: only 20% signal has no FSI 
→ results indicate preference for presence of FSI

● background normalized from data: 70 % from 
multi-π with π0 and missing π±

15/20

(±50%)

(depletion at 0.3GeV 
due to absorption)

 Analysis:

BU: 8



  

A.Bravar 
EPS 2015



  

F.Sanchez 
Neutrino 2014



  

F.Sanchez 
Neutrino 2014



  

Beyond oscillation analysis
 Inelastic:

NCQE:

→ primary deexcitation γ + secondary γ from p scattering 

(overwhelming at ~500 MeV → bkg for SN ν counting)

● γ spectrum depend on details of O nuclear 
structure (primary) and the n/p multiplicity 
(secondary)

● primary background from non-QE interaction 
with pion reabsorption by FSI

● very low PMT trigger threshold 
   (radioactive bkg removed with beam timing cut)

muons single γ

multiple γ

efficiency 70% 
(+25% NCQE w/o γ)

used to detect SN neutrinos (10-20 MeV)
ν + 16O → ν + 16O* → de-excitation γ

ν + 16O → ν + p + 15N* 

 Measurement at Super-Kamiokande

data/MC disagreement in γ 
multiplicity but good agreement 
in total γ energy
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